

Can we have user friendly DSS, especially for weed control?

by Per Rydahl, AU, Denmark

and
Nicolas Munier-Jolain, INRA, France
Roberta Masin, CNR, Italy
Ole Q Boejer, AU, Denmark
JE Orum, UCPH, Denmark

Survey on existing DSS

- Planned and executed by participants from 8 countries
- 27 EU-countries + Switzerland was included
- Data was collected on 70 DSS
- Analyses revealed a rich collection of:
 - crop x pest systems
 - decisions, which are supported
 - modelling approaches
 - levels of validation
 - levels of implementation
 - ... and much more ...

Results from survey

- In a context of reducing the use of pesticides, 'best parts' were identified in 4 major crop x pest groups:
 - diseases in horticultural crops (18 DSS)
 - diseases in agricultural crops (37 DSS)
 - pests (18 DSS)
 - weeds (9 DSS)
- Report (140 pages) was published on ENDURE Workspace and endure-network.eu

'Best parts' for weed control

'DecidHerb', France

- 'fuzzy logic' to quantify needs for weed control
- multicriteria assessment of alternative treatments options

'GestInf', Italy

 yield-loss functions and expected economic net return of alternative treatment options

'CPOWeeds', Denmark

- herbicide dose-response functions
- linear optimization of herbicide mixes, e.g. for cost or Treatment Frequency Index (TFI)

1. Before a growing season:

- 1. read updated field weed map
- 2. consult DSS
- 3. order relevant herbicides x quantities

2. During a growing season:

- 1. follow time plan (when, what)
- 2. inspect field
- 3. consult DSS
- 4. treat if needed
- 5. evaluate
- 6. inspect field again ...

3. After a growing season:

1. return surplus of herbicides to the dealer

Decisions on the day of treatment

System architecture

- Microsoft Excel (2007/2010)
- A 'modelling platform', customizable for:
 - arbitrary combinations of country x crop x weed species x herbicides x 'conditions'
 - complexity of algorithms and calculation functions
- Operational DSS and documentation is publicly available in the ENDURE Virtual Laboratory

Initial parameterisation

- To test functional integrity:
 - 1 crop, 3 weeds, 3 herbicides
- Estimates of algorithms and functions:
 - Weed Potential Threat (WPT): INRA, France
 - Herbicide dose-response functions: AU, Denmark
 - Yield loss functions and economic net return: CNR, Italy
- Recommendations from this parameterisation should not be followed in real fields!

User-interface

© ENDURE, February 2007

2 weeds, small, low density

Field report			Ca
Maize growth stage	Crop vigor	Yield (weed free) - hg/l	ha
2-3 leaves	Strong, even canopy	110 - 130	
3	2	3	
Grain price - €/hkg			
17 - 20			
3			
Weed	Weed growth stage	Density group	На
Canadia busa nasta		2 20 01/003	

1-2 leaves

Ca	lcu	ated	va	ues
----	-----	------	----	-----

Optimize for: Actual value Costs €/ha 5,7407408

Cost model 5,740740806 Costs €/ha TFI g a.i. 5,7407408 0,129 19,31 Net margin €/ha 5,3

Harm	WPT
0,198	0,170523416
0,668	0,260382514
-	-
-	-
-	-
-	-
-	-
_	

Costs €/h

5,74

3 - 20 pl/m²

Target efficacy						
WPT-con.	Man	Result				
34%		34%				
52%		52%				
-		-				
-		-				
-		-				
-		-				
-		-				

Expected eff. ADM 89% 52%

Recommendations for control

19,3 Maister;

Galium aparine

0.327 Callisto:

13% of N!

Find all treatment	option

ıa	Costs €/ha	TFI	g a.i.	Net margin €/ha
	5,74	0,128	19,3	5,3
	16,8	0,218	0,327	-5,9

3 weeds, larger, high density

Field report			Calc	ulated value	25				
				Optimize for:	Acti	al value	2		
Maize growth stage	Crop vigor	Yield (weed free) - h	nkg/ha	Costs €/ha	58,	885135			
2-3 leaves	Strong, even canopy	110 - 130					-		
3	2	3		Cost model	Cos	ts €/ha	TFI	g a.i.	Net margin €/ha
Grain price - €/hkg				58,88513514	58,	885135	1,75	161,3	699,4
17 - 20									
3					Tar	get effi	icacy		Expected eff.
Weed	Weed growth stage	Density group	Harm	WPT	WP.	-con.	Man	Result	ADM
Capsella bursa-pastoris	3-4 leaves	> 50 pl/m²	0,256	0,330192308		66%		66%	100%
Galium aparine	3-4 leaves	> 50 pl/m²	0,795	0,815909091		95%		95%	97%
Setaria viridis	3-4 leaves	> 50 pl/m²	0,507	0,556428571		95%		95%	95%
			-	-		-		-	-
			-	-		-		-	-
			-	-		-		-	-
			-	-				-	-

Recommendations for control

150 Maister; 11,2 Harmony SX;

2 x N!

150 Maister; 0,61 Callisto; 11,2 Harmony SX;

150 Maister; 1,5 Callisto;

58,8 90,2 121

Costs €/ha	TFI	g a.i.	Net margin €/ha
58,8	1,75	161	699,0
90,2	2,15	161	705,0
121	2	151	699,0

Find all treatment options

ersifying crop protection

- Can we have user-friendly DSS, especially for weed control?
- What do you think?
- Please visit DSS demo stand at this conference

Expected benefits

A central point of reference for:

- economic thresholds for treatment
- target efficacy
- herbicide efficacy
- optimized treatments on a field level
- anti-resistance strategies (preventive, curative)

A potential for reduction of herbicide use:

- depends on the extent of herbicide efficacy data accessible
- if efficacy data from 2-3 dose rates is accessible:
 20-50% reduction as compared to 'best practices'
- low risk for farmers only 'low-hanging fruits' are picked (=only safe reductions are recommended)

Requirements for construction

Qualification required for construction (parameterization) of DSS:

insigth in interactions between:
 crops x weeds x herbicides x 'conditions'

A general problem:

limited access to data on efficacy of herbicides in reduced dose rates

A general solution: Adjust EU-legislation on pesticides:

- data on pesticide efficacy should be publicly accessible!
- more data on efficacy of reduced dose rates of pesticides should be submitted for registration of pesticides!
- such actions also support the implementation of Directive 2009/128/EC (IPM) in 2014

Requirements to end-users

Field inspections:

- advisors cannot overcome this task (but support)
- low economic incentives for farmers
- farmers are reluctant

Danish questionnaire survey, 2004, 600 farmers:

user-interface (similar to new DSS): no problem!

differentiated treatments on a field level: no problem!

field inspections before treatments:
big problem!

Future plans

- Excel tool will be used as an outline for construction of web-applications and web-services
- Parameterisation for more regions x crops x weeds x herbicides x conditions
- Integration of Ipest index and 'multicriteria assessment'
- Integration of more requirements in Directive 2009/128/EC (IPM):
 - non-chemical control measures
 - 'guidelines' for specific combinations of nation/region x crop x pest type

